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BIVARIATE COMPOSITE 
VECTOR VALUED RATIONAL INTERPOLATION 

JIEQING TAN AND SHUO TANG 

ABSTRACT. In this paper we point out that bivariate vector valued rational 
interpolants (BVRI) have much to do with the vector-grid to be interpolated. 
When a vector-grid is well-defined, one can directly design an algorithm to 
compute the BVRI. However, the algorithm no longer works if a vector-grid 
is ill-defined. Taking the policy of "divide and conquer", we define a kind 
of bivariate composite vector valued rational interpolant and establish the 
corresponding algorithm. A numerical example shows our algorithm still works 
even if a vector-grid is ill-defined. 

1. MOTIVATION 

Let {(xi,yj)Ii,j = 0,1,... , n} be a set of points in JR2 and let these points be 
reordered into the following array 

(Xov yo) ... (Xo) Yn) 
(1.1) '. .. * 

(Xn v Yo) (Xn v Yn ) 
where xi > xi+1 and yi < Yi+1 for i = 0, 1, , n - 1. We call this array a square 
point-grid, and denote it by Htm. Let Vij, E Cd be a d-dimensional vector associated 
with the point (xi, y1) E Hmn. Similarly we arrange these vj into the following array 

Vo,o Vo,l *-- VO,n 

(1.2) V] ,0 V1,1 * V],n 

Vn,o Vn,l *--. Vn,n 

and call it a vector-grid, denoted by vn. 
For a d-dimensional vector vY = (Vl, V2, ... , Vd) E d its generalized inverse (or 

the Samelson inverse) is defined as (see [3]) 

(1.3) vS d 
= (v,v, d 

z1i=1 viv 
where v* denotes the complex conjugate of vi. 
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Definition 1.1. A d-dimensional vector valued polynomial 

NA(x, y) = (Ni(x, y), N2(x,y),... ,Nd(x, y)) 

is said to be of degree n and we write aN = n, if aNi (x, y) < n for i = 1, 2, ,id 
and aNj(x,y) = n for some j (1 < j < d). 

Definition 1.2. Denote by Hn the collection of all bivariate polynomials with total 
degree not exceeding n and by Hn the collection of d dimensional bivariate vector 
valued polynomials of degree n. Then the set 

Hn,m = {A(x, y)/M(x, y) IN(x, y) E Hn, M(x, y) E Hm} 

is called the collection of bivariate vector valued rational functions of type (n/m). 

All vectors in this paper are d-dimensional unless otherwise specified. 
Making use of the Samelson inverse and reciprocal difference, one of the authors 

constructed the following Thiele-type branched continued fraction (see [5]): 

(1.4) rn(x, y)= to(Y) + x?-xn- 

where 

ti (y) =Cl ,0 (xo *** x;Yo) 

(1.5) y-Yo Y-Yn-1 
cl,1(xo< ,xi; yo, Yl) + + cj,n(Xov * * * xi; Yo ,* * . Yn) 

and yj (xo, , xi; Yo, , Y1) are computed through the following recursive process 

(1.6) CO)(i y)=vi, (i =O, 1, n, j = ,1, n), 
(1.7) 

co'j_(xi; Yo, , Yj-2Y) - ,J-i(-ti; Yo,... , Yj-2, Yj-1) 

(1.8) 

Ci,o(Xo,.. ,xi;Yj) = 
i,2- 

Ci_ 1'o (XOv **Xi-2 ) Xi; Yj)-Ci 1,o(xO * ... * Xi-2, Xi-1; Yj) 

(1.9) 

Ci j(XO, ) .Xi; Yo, ,Yj) 

- Y3-1 
cij1XO, .. iXi; YO, .., Yj-2i Yj)-Ci j1XO, , . Xi; Yo, .., Yj-2i Yj-1) 

It is not difficult to prove (see [5]) that rF(x, y) E 2+2n,2[(n2+2n)/2] (here [x] 
denotes the greatest integer not exceeding x) and 

(1.10) rn(xi,Y;)= Vi, (i=O,1,*, n, j =O, 1, ,n). 

If the roles of x and y are interchanged, one will obtain a so-called dual Thiele- 
type branched continued fraction (see [5]) 

(1.11) rn(x, y)-= t0x)? +~77 ??r 1 1 +* (Y ) 
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where 

1l (X) = l(xo; Yo ***,Yi ) 

(1.12) 
C (XO, xI; y ***VY) + ***+ c ( ,***v n; YOi .. I Y1) 

and d> (x0,... , xi; Yo, ,yj) are computed according to the following recursive 
process 

(1.13) 5o,0(xi, Yi) = ii (i = O,1,* , n, j = 0, 1, , n), 

(1.14) 

eo" j(xi; Yo, * *) i 

yj- yj- 

co,j_1(xi; Yo, I Yj -2, IYj) - 0j 1 (xi; yo, ,IYj-2, Yj-1)' 
(1.15) 

c0 (xo, ,Xi; j) 
Xi - Xi-i 

ei -1,0(XO *I * Xi-2,I Xi; e)- _,0 (XO, I 
.. 

*, Xi-2i Xi-1; y-j) 
I 

(1.16) 

cz" j(xo, I ..Ii; Yo,. vYi) 
Xi - Xi-i 

Ce_l- j(XO I. I Xi-2i xi; yo, I yj) -C-c_ j (XOi .., Xi-2, Xi-1; Yo, I ,. yj) 

To distinguish rF(x, y) from in(x, y), we might as well call rF(x, y) defined in 
(1.4)-(1.9) an x/y-type and in(x,y) defined in (1.11)-(1.16) a y/x-type. It can be 
proved that iFn (x, y) E Hn2+2n,2[(n2+2n)/2] and 

(1.17) Vi (i = 0,1I..., n, j = 0,1, .. ., n). 

Although both rF(x, y) and in(x,Iy) are of the same rational type and have the 
same interpolation properties, one can by no means assert that r' (x, y) = rn(x, y), 
as is shown by a numerical example in [5]. However, if the square point-grid lPn is 

symmetric, by which we mean xi = yi for i = 0, 1,... , n, and the vector-grid Vn is 
symmetric, by which we mean vij = v for i,j = 0,1,... ,n, then we can conclude 
'rn (xI y) _ rn (Y, x) (see [5] ) 

In what follows, we only restrict ourselves to the discussion of x/y-type bivariate 
vector valued rational interpolants (BVRI), because the results in x/y-type BVRI 
can easily be transplanted into y/x-type. 

For convenience, let us simply set 

(1.18) c5)7 , ,xi;yo, ,y1) (i=O,1,... ,n, j=0,1,... ,n). 

Then we have the following algorithm to compute r' (x, y). 

Algorithm 1.1. This algorithm is carried out according to the following three 
steps. 

a) Fori = 0,1, I, and j =0,1, ,n,let 

-(0,0) v 
cj vi,j. 
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b) Forj=0,1, ,n, p=1,2,* ,n, andi=p,p+1, ,n, let 

-4(p,0) Xi= - Xp 
i Cj - -p-c,O) 4p-l,O) 

ci,j p- 1,j 
c) For i =0, 1,.- , n, q = 1, 2,. ,n, and j = q, q + 1, , n, let 

(i,q) Yj - Yq-1 
ci,i C 4i,q-C1) i,q-1 

i,j i,q-1 

It is easy to verify that 

rn(Xi,yj) = V,i,j, V(X%,yj) E 7J- 

Definition 1.3. A vector-grid Vt is said to be well-defined if the c5{pq) as defined 

in Algorithm 1.1 satisfy c54`1O0) 7L -4p_1 "?) for j =0,1, ..., n, p = 1, 2,..., n, and 

i=p,p?1,... ,n, an1 .) n cHjQ) for i =0, 1,... , n, q = 1, 2,... ,n, and 

j = q, q +.1.. ., n. Otherwise the grid Vn is said to be ill-defined. 

It is clear that if a vector-grid Vn is ill-defined, then Algorithm 1.1 does not 
work any more. 

Example 1.1. Let flu and a two-dimensional vector-grid V1 be given as follows: 

(1,0) (1,1) 
(0,0) (0,1), 

(1,0) (1,1) 
* (0,0O) (1, 0) 

Proceeding by Algorithm 1.1, we obtain 

c 0,0) (1, 0) co?) = (1, 1) 
C01,0 -0 0) (6j 10 0 
-c(0,0) (0,0) c1,1 = (1,0) 

C1,0 -~~~~4 ,O 
1 

coO) 
- (1,0) cai?) = (0,1) 

- (1,0) o(0,1) = (0,1) 
0,0o?) = , (?il) (o(1) 

C ( l ) - (1, 0) c i,i 2 2 

Obviously V1 is well-defined. As a result, 

Y - Yo ___ 
to (y) = o,o + = (1,0) + ' (1 y), 

CO, 1 ~ (0, 1)- 
-4 ~Y - Yo y 

ti(y) = d1,o? Y 1 =(1,0)? (1 Y ) =(1 ,Y). 

Consequently we get 

ri t0 ~ -x0x- 
F1(x,y) = (y)+ ? ) (1'Y) + x 

(y2 +(1 y)2 + (X-1)( y),y(y2 + (1y)2 + X-1)) 

(-)2 + y2 
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Example 1.2. Let 2 and the two-dimensional vector-grid V2 be given as follows: 

(0,0) (0,1) (0,2) 
][2: (-11 0) (-1, 1) (-11 2) 

(-2, 0) (-2, 1) (-2, 2), 

(2,2) (6,0) (24,24) 
v2: (12,6) (6,0) (12,6) 

(0,0) (6,0) (-2,2). 

We see v0,1 = v1,1 = V2,1 = (6, 0), which leads to C501) = C(0,0) = 2(0,0) therefore V2 
is ill-defined and we cannot use Algorithm 1.1 to construct a vector-valued rational 
function r2 (x, y) that interpolates V2 over 2 

In the next section, we define a new interpolant with a corresponding algorithm 
more reliable than Algorithm 1.1. 

2. THE DEFINITION AND COMPUTATION OF BCVRI 

Let us decompose the grid H' into the following two triangular grids: 

(xo Yo) 
(x1,yo) (xi,yi) 

(Xn YO) (Xn2. Y1) ... (Xn Yn) 
and 

(xo, Y1) (xo, Y2) .. (X0, Yn) 

(2.2) (xl,Y2) (Xl,Yn) 

(Xn-l Yn), 

denoted by LB and RU, respectively. We hope to use the policy of "divide and 
conquer" to construct a kind of composite vector valued rational interpolant. In 
what follows we abbreviate the term bivariate composite vector valued rational in- 
terpolant as BCVRI. 
Let 

(2.3) Rn(LB; x, y) = So(LB; y) + ? + . + 
Si (LB; y) Sn (LB; y)' 

~~~~~X - XriXXn2 
(2.4) Rn (RU; x, y) = So (RU; y) + XX O l ( y 

Si (RU; y) Sn1 (RU; y) 

where 

(2.5) Sk(LB;y) =ak,o + Y -k- + k = 0,1,. ,n, 
ak,1 ak,n-k 

(2.6) 

Sk (RU;y) =bk,k+l + + + Y -i, k = 0,1,. ,n-1. 
bk,k+2 bk,n 
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Suppose Hi is uniform, i.e., 

(2.7) Xi-Xi = Xi - xi+1 = Yi+1-Yi = Yi- Yi-i, = 1,2,... , n - 1, 

and let 
n 

(2.8) P(x, y) = (x + y-Xn-Yi), 
i=O 

n-1 

(2.9) Q(x, Y) = fl (x + y-Xi -Yn)- 
i=O 

It is clear that P(x, y) and Q(x, y) are polynomials of degree n + 1 and n, respec- 
tively, and 

(2.10) P(xi,yj) 0, Q(xi,yj) #0 if (xi,yj) C LB, 
P(xi,yj) 7L0, Q(xi,y3) =0 if (xi,yj) E RU. 

When H-n is not uniform, by which we mean that the conditions (2.7) are not 
satisfied, one can also construct polynomials P(x, y) and Q(x, y) such that (2.10) 
holds. In general, however, the degrees of the polynomials will be much higher. For 
example, 

P(x, y) = 7 [(X Xi)2 + (y yj)2] 

(xi,y,)ELB 

Q(x,y) = 171 [(X -Xi)2 + (y yj)2] 
(xi,yj)ERU 

are the polynomials satisfying (2.10) with degree (n + 1)(n + 2) and n(n + 1), 
respectively. 

Now we define a BCVRI over Hn as follows: 

(2.11) Rn(x, y) = Q(x, y)Rn(LB; x, y) + P(x, y)Rn(RU; x, y) 

The following algorithm aims at computing the coefficients aki and bk,l in branched 
continued fractions R (LB; x, y) and Rn (RU; x, y) simultaneously. 

Algorithm 2.1. This algorithm proceeds as follows. 
a) Fori-0,1, ,n and j = 0,1, ,i, let 

(2.12) A )= i 

Fori=zO,1,... ,n-1 andj=i+1,i+ 2,* ,n, let 

(2.13) B v x 

b) For j = ,1,* ,n, p= 1, 2, ,n-j, andi=j,j+1,** ,n-p, let 

(2.14) 24A(P,0) 
_ Xi - Xnp+ 

(214 Ai, -4(P-lvO) VP(P-lO) 
i,j n-p+1,j 

c) Fori = 0,1,*. ,n, q=1,2,... ,i, andj=q,q+1,** ,i, let 

(2.15) -(n-i,q) Y j- Yq-1 
*215) Aij ni-i,q-l) -( n-i,q-l) 

-Xi(, i i,q-1 
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d) Forj=1,2, 2 ,n, p=1,2, ,j-1, andi=p,p+l,... ,j-1, let 

(2.16) ~ ~ ~~~-(p, 0) Xi - X 
(2.16) Bz,J -(P-1,0) _ (P-lj0) 0 

Bij - Bp-l,j 

e) For i =0, 1, ..., n-1 and j = i + 1, i + 2, ,n, let 

(2.17) g(i,i+1) (i,O) 

f) Fori=0,1,**. ,n-2, j=i+2,i+3,*.. ,n, and q=i+2,i+3, ,j, let 

(2.18) (i, q) = Yj - Yq-1 
Bj - Bi,q-1 

Theorem 2.1. Let 

(2.19) ak,l = n-k ") (k =0, 1, ,n, 1=0,1,... ,n-k), 

(2.20) bk , =B k,ll) (k = 0,1 ...n-1 1=.k+l,.n.. 

Then 

Rn1(x,iy) c Hmax(&Q+n22+n-2PaP+n2+n-l)rn2+n-2 for even n, 

Rn1(x, y) E Hmax(aQ+n2+n-laP+n2+n-2)rn2+n-2 for odd n, 

where aQ and aP denote the total degrees of polynomials Q(x,y) and P(x,y), 
respectively. (In particular, if Hln is uniform, then aQ = n and aP = n + 1. In 
this case, Rn(x,y) c 

Hn2+2n,n2+n-2 for even n and Rn(x,y) cHn2+2nl,n2+n-2 
for odd n.) Moreover, 

Rn(xi, yj) = vi,j V(xi,yj) c H. 

Proof. It is not difficult to show by induction that 

Rn(LB;x,y) E H(n2+2n)/2,(n2+2n)/2 for even n, 

Rn(LB;x,y) E H(n2+2n-l)/2,(n2+2n-3)/2 for odd n, 

Rn(RU; x, y) c H(n2-2)/2,(n2-4)/2 for even n, 

Rn(RU;x,y) c H(n2-l)/2,(n2-1)/2 for odd n. 

Therefore 

Rn(x,Y) E Hmax(aQ+n2+n-2,aP+n2+n-1)rn2+n-2 for even n 

Rn1(X, Y) c Hmax(aQ+n2+n-l,aP+n2+n-2)rn2+n-2 for odd n. 

Since 1-n = LB U RU, (xi, yj) E lln implies (xi, yj) E LB or (xi, yj) E RU. If 
(Xi, yj) E LB, then from (2.5), (2.19) and (2.15) it follows that 

Sk (LB; yj ) =A ? Y1Y0 + Y.Y+ 

'n-k,l ni-k,j 

r(k,O ? 
Yj-Yo 

Y<Y1-2 - n-k,O -(k 1) 1(k,j-1) 
n-k,l n-k,j 

=-g=Akk,O )j 
- ri-k,j k, nk, 
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By (2.3), (2.14) and (2.12) one has 

Ltx , y)- 0?, Xi - -n i Xni+l 

ni-,j i,j 

nj,O ?--1O 

ni-l,j i 

Therefore, by (2.11) one finally gets 

Rn(Xi,yYj) Q(Xi, yj)Rn(LB; xi, yj) = vij. 

If (xi,yj) c RU, then from (2.6), (2.20) and (2.18) it follows that 

Sk(RU; yj) = Bk k+l) ? Y + ? Y - + Y- 
=k,kk+l )+ (k,k+2) ? **k+ 

k,k+2 Bk,j 

= B kk+1 ? Yj - Yk+1 ? Yj - Yj-2 
=Bkkl + -(k,k+2) ? * * k - Bk,k+2 Bk,j 

- _ (k k+1) 

Thus, from (2.4), (2.17), (2.16) and (2.13) we get 

Instead of(2.1)jand) ?2.2i -oXn Xi - Xici 
Rn (RU; xi, yjO) yo)j o(,12 ? .. ?n)(i,i+l) 

B -X0 - n 

= ? XiXO ? ? Xi -Xi2i 

B,j 

Hence, by (2.11) we have 0) 

3. THE COMPLEXIT OF AGORTHM 

(xi,yo) (xo,yo)~~Bj -7 V j (xo,yi) (o,n 

(x2,yo) (x (Xi) j=Px,yj (U i (,yj) (xijy 
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and the decomposition, along another diagonal, 

(Xo, yo) ... (XO,Yn-1) (XO,Yn) (Xl i Yn) 
(Xi yo) ... (Xli Yn-1) (X2, Yn-1) (X2, Yn) 

(xn ,yo) (Xn, Yl) (Xn, Yn-1) (Xn, Yn). 

It is not difficult to define the corresponding BCVRIs based on the above decom- 
positions which interpolate Vn over H[n. 

For a vector valued continued fraction, the complexity is obviously related to 
the computation of the Samelson inverses. FRom (1.3) we know that carrying out 
a Samelson inversion for a d-dimensional vector demands at least 2d operations of 
multiplications or divisions. Therefore we take the number of Samelson inverses in 
an algorithm as the criterion for judging whether the algorithm is complicated or 
not. 

Suppose N1 and N2 are the total numbers of Samelson inverses to be computed 
for the vector valued rational interpolants of form (2.11) and (1.4)-(1.5), respec- 
tively. Then 

n1 (n -j)(n -j + 1) 
i.( n ),jj_1 n-2 ,+ 

j=O 
2 

i=O j=1 i=O 

n(n + 1)(n + 2) n(n + 1)(n + 2) (n-1)n(n + 1) (n-1)n(n + 1) 
6 ? 6 ? 6 ? 6 

n(n+ 1)(2n+ 1) 
3 

N2 = n(n+ 1)2, 

which shows that it is n(n + 1) (n + 2)/3 times more economical to compute the 
BCVRI Rn(X, y) in (2.11) yielded by the decomposition (2.1) and (2.2) of Hn than 
to compute (1.4) and (1.5) directly. Therefore at least 2n(n + 1)(n + 2)d/3 multi- 
plications are saved through our decomposition method. 

4. NUMERICAL EXAMPLE 

Let us consider again the grid H2 and the corresponding vector-grid V2 in Ex- 
ample 1.2, i.e., 

(0,0) (0,1) (0,2) 
1l2 (-1, 0) (-1, 1) (-1, 2) 

(-2, 0) (-2, 1) (-2, 2), 

(2,2) (6,0) (24,24) 
v2: (12, 6) (6, 0) (12, 6) 

(0,0) (6,0) (-2,2). 

In this case, fl2 is uniform and V2 is ill-defined. We mentioned in Example 1.2 that 
the computational procedure in Algorithm 1.1 breaks down. In fact, r2(x, y) does 
not exist at all in this case. Otherwise, r2 (x, y) can be written as 

x'xo x - xl 

til(y) ? T2 (Y) 
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Whatever a reordering of the square point-grid H2 and vector-grid V2 is made, 
we always have a whole column in V2, entries of which are all equal to (6, 0), i.e., 
VO,j = vl,j = V2,j = (6, 0) with some j in {0, 1, 2}. Therefore we have 

r2(XO,Yj) = r2(Xl,Yj) = T2(X2,Yj), 

which leads to 

_xl -x -O 

tl (yj) 

The above relations imply (x1 -xo)/Itl (yj) = 0 which is impossible because x, =$ xo. 
Next, we turn to the construction of a BCVRI defined in (2.11). By (2.8) and 

(2.9), 

P(x,y) =(x+y+2)(x+y+1)(x+y), 

Q(x,y) = (x+y- 2)(x+y- 1). 

By (2.12) and (2.13), one gets 

AO, 0 = (1,1), 

A(?') = (2, 1), A(?i) 
- 

(3, O), 10 

A2,0 - 
) A 0), 2,1=(1 0) 22A ( (- 1, 1) 

and 

Bo'') 
- 

(1,0), (O,O) = (1,1), 

~(0, 0) 
B1,2 (2 1). 

According to (2.14) and (2.15), one obtains in order 

Ao0O) = (1,1), 
~~~4(10) ~ ~ ~ -1,0 

A(10) = (2/5, 1/5), AiO) = (1/2, O), 

2,0 = (020) 2,1 = (1 O) 2 A-( - ( 1), 

A-(o2?= (3/5,4/5), 

A1o,) = (2/5,1/5), Ap('0) 1/2,0), 
X4(00O) -40 0) 0 2 I-= (0,0), (1), () - (-1,1), 

A-(2,0) 
- 

(3/5,4/5) 
0,0 2-15), 

1,l0) = (2/5, 1/5), ,j(lil) = (2, -4), 

S(2,? (00), A2,1 = (10), 2,2 - =-1,1), 

A(2,0) = (3/5,4/5), 

0(,0) - 5), 

,lO = (2/5,1/5), A,,lil = (2, -4), 

20= (0, 0), Al2 = (II U), 11 - (-/5,1/5). 



COMPOSITE RATIONAL INTERPOLATION 1531 

By Theorem 2.1 

XO) Y - Yo ? Y- Yi So (LB; y) -=- -A2,0 + - + f+ 

2,1 2,2 

00)+ y y-ly 

I(1,0) (-2/5,1/5) 

(3y - 2y2, y2 - y) 

(3 - 2y)2 + (y- 1)2' 

Si(LB; y) = 1(O0) Y - Yo = (2/5,1/5) + ? 

-(-~~~~i -))-4 4?y 1-y 
10 ' 5 

S2(LB; y)= Ao20) = (3/5,4/5). 

This leads to 

R2 (LB; x, y)= So (LB; y) + XX2 + ? 
- Si (LB; y) S2 (LB; y) 

(3y-2y2 y2_y) x+2 x+1 

(3 - 2y)2 + (y - 1)2 
F (4+Y 13Y) +F(3/5,4/5) 

(3y - 2y2, y2 _ y) (10x + 20)(6x + y + 10, 8x - 2y + 10) 
(3 - 2y)2 + (y - 1)2 (6x + y + 10)2 + (8x - 2y + 10)2 

According to (2.16)-(2.18), one derives 

110,?) = (1, 0), Bo?0) =(1, 1), 

B(1'0) (-1,0) 

B1, -10) 
0o1) (1 0), %1) =(1, 1), 

-(1,2) =(1O 

1_ -10) 
0,?i) =(1,0o), B9o?2,2) = (01), 

-(1,2) (1O 

By Theorem 2.1 

So(RU;y)= Bo,1? + YY = (1, O) + I = (1, y - 1), 

Si (RU; y) =(1,2) = (-1,0), 
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which results in 
x - X 

R2(RU; x, y) = So(RU; y) + ? U) 

=(1,y-1)I+( =(1 -x,-) 

Hence we finally obtain 

R2(x,y) = Q(x, y)R2(LB; x, y) + P(x, y)R2(RU; x, y) 

= (x+y-2)(x+y- 1) _2y)2 + (y - 1)2 

(lOx+ 20)(6x+y+ 10,8x - 2y+ 10) 
(6x + y +10)2 +(8x - 2y +10)2 2 

+ (x+y+2)(x+y+ 1)(x+y)(1 -x,y- 1). 

It is easy to verify that R2(X, y) interpolates j 2 over H2. In our example, the 
vector-grid V2 is ill-defined, and, what is more, as mentioned at the beginning 
of this section, in this case one fails to find a rational interpolant r2(x,y) of the 
form (1.4). However, R2(x, y), as a BCVRI defined in (2.11), still exists. Hence, 
compared with Algorithm 1.1, our new algorithm for BCVRI is more reliable in the 
sense that it can overcome the nonexistence of some r' (x, y), and more economical 
in the sense that it involves fewer Samelson inverses. 
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